
FlexCat_english

FlexCat_english ii

COLLABORATORS

TITLE :

FlexCat_english

ACTION NAME DATE SIGNATURE

WRITTEN BY April 17, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

FlexCat_english iii

Contents

1 FlexCat_english 1

1.1 FlexCat_english.guide . 1

1.2 FlexCat_english.guide/Disclaimer . 2

1.3 FlexCat_english.guide/Survey . 2

1.4 FlexCat_english.guide/Installation . 5

1.5 FlexCat_english.guide/Program start . 6

1.6 FlexCat_english.guide/Catalog description . 7

1.7 FlexCat_english.guide/Catalog translation . 9

1.8 FlexCat_english.guide/Source description . 10

1.9 FlexCat_english.guide/Using FlexCat source . 12

1.10 FlexCat_english.guide/C . 14

1.11 FlexCat_english.guide/C++ . 15

1.12 FlexCat_english.guide/Oberon . 16

1.13 FlexCat_english.guide/Modula-2 . 17

1.14 FlexCat_english.guide/Assembler . 17

1.15 FlexCat_english.guide/E . 18

1.16 FlexCat_english.guide/Future . 19

1.17 FlexCat_english.guide/Credits . 20

1.18 FlexCat_english.guide/Index . 21

FlexCat_english 1 / 24

Chapter 1

FlexCat_english

1.1 FlexCat_english.guide

FlexCat V1.4 Documentation

This file describes the Usage of FlexCat V1.4, a program which
generates catalogs and the source to handle them. FlexCat works similar
to CatComp and KitCat, but differs in generating any source you want.
This is done by using the so called Source descriptions, which are a
template for the code to generate. They can be edited and hence adapted
to any programming language and individual needs. (Hopefully!)

General:

Disclaimer
Copyrights, (NO) warranty

Survey
What is FlexCat?

Installation
How can I get it working?

Using FlexCat:

Program start
Calling FlexCat from the CLI

Catalog description
Catalog description files (.cd-files)

Catalog translation
Catalog translation files (.ct-files)

Source description
Source description (.sd-files)

FlexCat_english 2 / 24

Using FlexCat source
Using FlexCat source in own programs

Unnecessities:

Future
Further development of FlexCat

Credits
What I always wanted to say...

Index
Where you find what you are never looking for

1.2 FlexCat_english.guide/Disclaimer

Copyright and other legal stuff

Copyright (C) 1993 Jochen Wiedmann
Am Eisteich 9
72555 Metzingen (Deutschland)
Tel. 07123 / 14881
Internet: wiedmann@uni-tuebingen.de

Permission is granted to make and distribute verbatim and modified
copies of this documentation and the program FlexCat following the
terms of the "GNU General Public License" provided the copyright notice
and this permission notice are preserved on all copies and the "GNU
General Public License" (in the file COPYING) is distributed as well.

The author gives absolutely no warranty that the program described
in this documentation and the results produced by it are correct. The
author cannot be held responsible for any damage resulting from the
use of this software.

1.3 FlexCat_english.guide/Survey

Survey

Since Workbench 2.1 the Amiga offers a rather pleasant system of
using programs in different languages: The locale.library. (This is
called localizing, that’s what the name’s for.)

The idea is simple: You select a language, the english in most cases
and write your program in the same manner as you did without
localizing, except that constant strings are replaced by certain

FlexCat_english 3 / 24

function calls. Another function call makes it possible that the user
selects another language when the program starts. (The latter function
call loads an external file, the so called catalog and makes the former
to read the strings from the catalog instead of using the predefined
strings.)

These catalogs are independent from the program. All you need to do
for adding another language is to create a new catalog file and this is
possible at any time without changing the program.

But there are additional tasks for the programmer: He needs to
create the catalogs, the predefined strings and some source to handle
them all. (The functions that are mentioned above.) FlexCat is designed
to make this in an easy and nearly automatic manner without losing
flexibility especially in creating the source. An example should make
this clear:

Lets assume that we want to write a HelloLocalWorld.c. Our final
program will look like this:

#include <stdio.h>
#include <stdlib.h>
#include <HelloLocalWorld_Cat.h> /* You must include this! */

void main(int argc, char *argv[])
{

printf("%s\n", GetString(msgHello));
}

Note that this is quite the same as the original HelloWorld.c except
for replacing the string "Hello, world!" by a function call.

The above program uses a constant msgHello. A call to the functon
GetString replaces this by the respective string. These constants and
strings are defined in a so called Catalog description file. (see

Catalog description
. You always start by creating such a file called

HelloLocalWorld.cd, which could look like this:
; Comments ar eallowed, of course! Each line beginning with a
; semicolon is assumed to be a comment
;
; The language of the builtin strings:
#language english
;
; The catalog version, used for a call to Locale/OpenCatalog().
; This is different to Exec/OpenLibrary(): 0 means any catalog
; version, other numbers must match exactly!
#version 0
;
; This defines a string and the ID which allows to use it.
; The number 4 says, that this string must not be shorter than
; 4 characters.
msgHello (/4/)
Hello, world!

By using FlexCat you create another two files from the catalog
description: The include file HelloLocalWorld_Cat.h defines the

FlexCat_english 4 / 24

constants and the HelloLocalWorld_Cat.c contains an array of strings
and the GetString function. You don’t need to know how this look, just
use them. Especially you don’t need to know anything about the
locale.library!

However, you might be interested, how these files look or even more,
you might want them changed. This is the difference between FlexCat and
other catalog generators: FlexCat is not forced to use a special
builtin format for creating these files. Instead it uses external
template files, so called Source descriptions. This makes it possible,
for example, to allow using catalogs with AmigaDOS 2.0. see

Source description
. If you use the source descriptions from the

FlexCat distribution you can create the source files with the following
commands:

FlexCat HelloLocalWorld.cd HelloLocalWorld_Cat.c=AutoC_c.sd
FlexCat HelloLocalWorld.cd HelloLocalWorld_Cat.h=AutoC_h.sd

When your program is ready you use FlexCat again to create so called
Catalog translation files, one for each language you would like to
support. (Except english, which is builtin.) See

Catalog translation
.

Lets create a german catalog translation:
FlexCat HelloLocalWorld.cd NEWCTFILE Deutsch.ct

This file would no look as follows:
version
language
codeset 0
; Comments ar eallowed, of course! Each line beginning with a
; semicolon is assumed to be a comment
;
; The language of the builtin strings:
;
; The catalog version, used for a call to Locale/OpenCatalog().
; This is different to Exec/OpenLibrary(): 0 means any catalog
; version, other numbers must match exactly!
;
; This defines a string and the ID which allows to use it.
; The number 4 says, that this string must not be shorter than
; 4 characters.
msgHello

;Hello, world!

You see, it looks much like the catalog descriptions. FlexCat includes
the comments from the catalog description, even where it is
meaningless: Note the comment on the string length which shouldn’t
appear here as these informations must be in the catalog description
only. All you have to do now is to fill in the informations on the
version (a typical version string like $VER: Deutsch.catalog 1.0
(11.03.94) is expected), the language of the catalog translation
(Deutsch for german here), the codeset (which should always be 0
for now, see Locale/OpenCatalog() for details) and of course the
strings itself. FlexCat includes the original strings as comments, so

FlexCat_english 5 / 24

you always know what to fill in. Finally you create the catalogs with
commands like

FlexCat HelloLocalWorld.cd Deutsch.ct CATALOG Deutsch.catalog

Note, that you don’t need the program itself or the source files created
with FlexCat for the catalogs! You can create new catalogs at any time.
It is usual to supply distributions with a file NewCatalog.ct, so users
can create own catalogs.

But what happens if you change the program later? Just edit the
catalog description and use FlexCat to update the catalog translations:

FlexCat HelloLocalWorld.cd Deutsch.ct NEWCTFILE Deutsch.ct

All you need to do now is to enter new strings if needed.

1.4 FlexCat_english.guide/Installation

Installation

FlexCat is written in pure Ansi-C (except for the localization),
hence it should run on any Amiga and hopefully on other machines after
recompiling. (The localizing is commented out in that case.) This
holds for the created programs too: FlexCat is written using itself.
All distributed source descriptions should create programs running on
any Amiga and even any machine. (Of course you must ensure that the
variable LocaleBase has the value NULL in the latter case.) Localizing,
however, is possible beginning with Workbench 2.1 because the
locale.library isn’t available below.

It is not impossible to offer localizing without the locale.library:
The source description files C_c_V20.sd and C_h_V20.sd give an example,
where the iffparse.library is used to replace the locale.library, if it
is not available. This gives Localizing for Workbench 2.0. See

C
.

Installing FlexCat is simple: Just copy the program to a directory
in your search path and select a place for the source descriptions you
need. (These are the files called something like xx_yy.sd, where xx is
the programming language.) Probably you want to set the environment
variable FLEXCAT_SDDIR. See

Program start
.

If you want to use FlexCat in another language than the english you
need to copy the respective catalog files too. E.g. for the german
language copy the file Catalogs/Deutsch/FlexCat.catalog to
Locale:Catalogs/Deutsch/FlexCat.catalog or to
PROGDIR:Catalogs/Deutsch/FlexCat.catalog, where PROGDIR: is FlexCat’s
program directory. See

Using FlexCat source
.

FlexCat_english 6 / 24

1.5 FlexCat_english.guide/Program start

Calling FlexCat from the CLI

FlexCat is a CLI based program and doesn’t operate from the
workbench. It’s calling syntax is

FlexCat CDFILE/a,CTFILE,CATALOG/k,NEWCTFILE/k,SOURCES/m

where the arguments mean
CDFILE

is the name of a catalog description to be read. This is always
needed. Please note, that the base name of the source description
is created from it making this case significant. See

Source description
.

CTFILE
is the name of a catalog translation file to be read. This is
needed for creating catalogs or for updating an old catalog
translation file using the NEWCTFILE argument: FlexCat reads the
old file and the catalog description and creates a new catalog
translation file containing the old strings and possibly some
empty lines for new strings.

CATALOG
is the name of a catalog file to be created. This argument
requires giving CDFILE as well.

NEWCTFILE
is the name of a catalog translation file to create. FlexCat reads
strings from CTFILE, if this is given, strings missing in the
catalog translation are replaced by empty lines. (The new catalog
translation will contain only empty lines as strings, if CTFILE is
omitted.)

SOURCES
are the names of source files to be created. These shoud be given
in the form source=template where source is the file to create and
template is the name of a source description file to be scanned.

If the source description isn’t found, FlexCat tries to open a
file with the same name in the directory PROGDIR:lib. (The
subdirectory lib of the directory where the binary FlexCat itself
lives.) You can overwrite this default with the environment
variable FLEXCAT_SDDIR. Example:

FlexCat FlexCat.cd FlexCat_Cat.c=Templates/C_c_V20.sd

would look for a file Templates/C_c_V20.sd in the current
directory first. If this wouldn’t be found and no variable
FLEXCAT_SDDIR would be present, FlexCat would look for

FlexCat_english 7 / 24

PROGDIR:lib/Templates/C_c_V20.sd. But if FLEXCAT_SDDIR would exist
and have the value Work:Flexcat, for example, then the existence of
Work:FlexCat/Templates/C_c_V20.sd would be checked.

For further examples of command lines see
Survey
.

1.6 FlexCat_english.guide/Catalog description

Catalog description files

A catalog description file contains four kinds of lines.

Comment lines
Any line beginning with a semicolon is assumed to be a comment
line, hence ignored. (The string lines below are an exception.
These may begin with a semicolon.)

Command lines
Any line beginning with a ’#’ (with the same exception as above)
are assumed to be command lines. Possible commands are:
#language <str>

gives the programs default language, the language of the
strings in the catalog description. Default is #language
english.

#version <num>
gives the version number of catalogs to be opened. Note that
this number must match exact and not be same or higher as in
‘Exec/OpenLibrary’. An exception is the number 0, which
accepts any catalog. Default is #version 0. See
Locale/OpenCatalog for further information on catalog
language and version.

#lengthbytes <num>
Instructs FlexCat to put the given number of bytes before a
string containing its length. The length is the number of
bytes in the string without length bytes and a trailing NUL
byte. (Catalog files and hence catalog strings will have a
trailing NUL byte. This is not always true for the default
strings, depending on the source description file.) <num>
must be between 0 and sizeof(long)=4, Default is #lengthbytes
0.

#basename <str>
Sets the basename of the source description. See

Source description
. This overwrites the basename from the

command line argument CDFILE. See
Program start

FlexCat_english 8 / 24

. Commands
are case insensitive.

Description lines
declare a string. They look like IDSTR (id/minlen/maxlen) where
IDSTR is a identifier (a string consisting of the characters
a-z,A-Z and 0-9), id is a unique number (from now on called ID),
minlen and maxlen are the strings minimum and maximum length,
respectively. The latter three may be missing (but not the
characters (//)!) in which case FlexCat chooses a number and makes
no restrictions on the string length. Better don’t use the ID’s,
if you don’t need. The lines following are the

String lines
containing the string itself and nothing else. These may contain
certain control characters beginning with a backslash:

\b
Backspace (Ascii 8)

\c
Control Sequence Introducer (Ascii 155)

\e
Escape (Ascii 27)

\f
Form Feed (Ascii 12)

\g
Display beep (Ascii 7)

\n
Line Feed, newline (Ascii 10)

\r
Carriage Return (Ascii 13)

\t
Tab (Ascii 9)

\v
Vertical tab (Ascii 11)

\)
The trailing bracket which is possibly needed as part of a
(..) sequence, see

Source description
.

\
The backslash itself

\xHH
The character given by the ascii code HH, where HH are hex
digits.

\OOO

FlexCat_english 9 / 24

The character given by the ascii code OOO, where OOO are octal
digits. Finally a single backslash at the end of the line

causes concatening the following line. This makes it possible to
use strings of any length, FlexCat makes no assumptions on string
length.

A string is hence given by a description line and the following
string line. Let’s see an example:

msgHello (/4/)
Hello, this is english!\n

The ID is missing here, so FlexCat chooses a suitable number. The
number 4 instructs FlexCat, that the following string must not have
less than four characters and it may be of any length. See the file
FlexCat.cd for a further example.

1.7 FlexCat_english.guide/Catalog translation

Catalog translation files

Catalog translation files are very similar to catalog descriptions,
except for other commands and having no informations on string ID and
length. (These are taken from the catalog description.) Any string
from the catalog description must be present (However, FlexCat omits
writing strings into the catalog which are identical to the default
string.) and no additional identifiers may occur. This is easy assured
by using FlexCat to create new catalog translation files. See

Survey
.

The commands allowed in catalog translations are:
##version <str>

Gives the catalog version as AmigaDOS version string. Example:
##version $VER: Deutsch.ct 8.1 (27.09.93)

The version number of this catalog is 8. Hence the catalog
descriptions version number must be 0 or 8.

##language <str>
The catalogs language. Of course this should be another language
than the catalog descriptions language. The ##language and
##version commands must be present in a catalog translation.

##codeset <num>
Currently not used, must be 0. This is the default value.

The string from above looks like this in the catalog translation:
msgHello
Hallo, dies ist deutsch!\n

See Deutsch.ct as further example of a catalog translation.

FlexCat_english 10 / 24

1.8 FlexCat_english.guide/Source description

Source description files

This is the special part of FlexCat. Until now there is nothing that
CatComp, KitCat and others don’t offer too. The created source should
make it easy, to use the catalogs without losing flexibility. Any
programming language should be possible and any requirements should be
satisfyable. This seems like a contradiction, but FlexCat’s solution
are the source description files containing a template of the source to
be created. These are editable as the catalog description and
translation files are, hence FlexCat can create any code.

The source descriptions are searched for certain symbols which are
replaced by certain values. Possible symbols are the backslash
characters from above and additionally sequences beginning with a %.
(This is well known for C programmers.)
%b

is the base name of the catalog description. See
Program start
.

%v
is the version number of the catalog description. Don’t mix this
up with the catalog version string from the catalog translation.

%l
is the catalog descriptions language. Please note, that this is
inserted as a string. See %s below. below.

%n
is the number of strings in the catalog description.

%%
is the character % itself.

But the most important thing are the following seqences. These
represent the catalog strings in different ways. Lines containing one
or more of these symbols are repeated for any String.

%i
is the identifier from the catalog description.

%d
is the strings ID.

%e
is the number of this string. Counting begins with 0.

%s
is the string itself; this will be inserted in a way depending on
the programming language and can be controlled using the commands

FlexCat_english 11 / 24

##stringtype and ##shortstrings.

%(...)
inserts the text between the brackets for any string except the
last. This is probably needed in Arrays, if the array entries
should be separated by commas, but the last entry must not be
followed by a comma. You can use %(,) in that case. Note that
within the brackets there is no replacing of % sequences.
Backslash sequences, however, are still allowed.

The control sequences %l and %s create strings. But how strings look
depends on the program language. That’s why the source description
allows command lines similar to the catalog translation. These must
begin with the first character of the line and any command must have
its own line. Possible commands are:
##shortstrings

makes longer strings to be splitted on different lines. This is
probably not always possible or not implemented into FlexCat and
hence the default is to create one, probably very long string.

##stringtype <type>
Tells FlexCat how strings should look like. Possible types are
None

No additional characters are created. An image of the string
is inserted and nothing else. No output of binary characters
(the backslash sequences) is possible.

C
creates strings according to C. The strings are preceded and
followed by the character ". Strings are splitted using the
sequences "\ at the end of the line and " at the beginning
of the new line. (The backslash is needed in macros.) Binary
characters are inserted using \OOO. See

C
.

Oberon
is like string type C, except for the trailing backslash at
the end of the line. See

Oberon
. This string type is

recommended for Modula-2, too.

Assembler
Strings are created using dc.b. Readable ascii characters are
preceded and followed by the character ’, binary characters
are inserted as $XX. See

Assembler
.

E
Strings are preceded and followed by the character ’. A +
concatenates strings which are spread on different lines.
Binary characters are inserted like in C.

Let’s look at an excerpt from the file C_h.sd creating an include
file for the programming language C.

FlexCat_english 12 / 24

##stringtype C
##shortstrings

#ifndef %b_CAT_H /* Assure that this is read only once. */
#define %b_CAT_H

/* Get other include files */
#include <exec/types.h>
#include <libraries/locale.h>

/* Prototypes */
extern void Open%bCatalog(struct Locale *, STRPTR);
extern void Close%bCatalog(void);
extern STRPTR Get%bString(LONG);

/* Definitions of the identifiers and their ID’s */
/* This line will be repeated for any string. */
#define %i %d

#endif

For the search path that is used for source descriptions see see

Program start
.

1.9 FlexCat_english.guide/Using FlexCat source

Including FlexCat source in own programs

**

Of course this depends on what source is created and hence on the
source description. What we are talking here about are the source
description files distributed with FlexCat. See

Source description
.

All source descriptions should allow using the program without
locale.library. However, a global variable called LocaleBase
(_LocaleBase for assembler) must be present and initialized with
NULL or by a call to ‘Exec/OpenLibrary’. No localizing is possible in
the former case except when using the source description C_c_V20.sd.
This allows localizing on 2.0 by repacing the locale.library with the
iffparse.library. (A variable IFFParseBase has to be present for this
and initialized like LocaleBase.) See

C
. The programmer does not need

knowledge of these libraries except when creating own source
descriptions.

There are three functions and calling them is rather simple.

FlexCat_english 13 / 24

- : OpenCatalog (locale, language)
This function possibly opens a catalog. The argument locale is a
pointer to a Locale structure amd language is a string containing
the name of the language that should be opened. In most cases
these should both be NULL or NIL, respectively, because the user’s
defaults are overwritten otherwise. See ‘Locale.OpenCatalog’ for
details.

If the user has Deutsch and Français as default languages and the
programs base name is XXX this looks for the following files:

PROGDIR:Catalogs/Deutsch/XXX.catalog
LOCALE:Catalogs/Deutsch/XXX.catalog
PROGDIR:Catalogs/Français/XXX.catalog
LOCALE:Catalogs/Français/XXX.catalog

where PROGDIR: is the programs current directory. (The order of
PROGDIR: and LOCALE: can get changed in order to suppress a
requester like Insert volume YYY.

OpenCatalog is of type void (a procedure for Pascal programmers)
and hence gives no result.

- : GetString (ID)
Gives a pointer to the string with the given ID from the catalog
description. Of course these strings are owned by locale.library
and must not be modified.

An example might be useful. Take the string from the catalog
description example, which was called msgHello. The source
descriptions declare a constant msgHello representing the ID. This
could be printed in C using

printf("%s\n", GetString(msgHello));

- : CloseCatalog (void)
This function frees the catalog (that is the allocated RAM) before
terminating the program. You can call this function at any time
even before OpenCatalog is called.

C
FlexCat source in C programs

C++
FlexCat source in C++ programs

Oberon
FlexCat source in Oberon programs

Modula-2
FlexCat source in Modula-2 programs

Assembler
FlexCat source in Assembler programs

E

FlexCat_english 14 / 24

FlexCat source in E programs

1.10 FlexCat_english.guide/C

FlexCat source in C programs
============================

C source consists of two parts: A .c file which should be compiled
and linked without further notice and an include file which should be
included from any source part using catalog strings and which defines
the ID’s as macros.

Three different versions are available: AutoC_c.sd is the the
simplest. They use the autoinizializing possibilities of Dice and SAS/C
and are thus for those compilers only. All you have to do here is using
the GetString function. Unfortunately you don’t have all possibilities
with these source descriptions, at least without own extensions, but
this should be sufficient for 95% of all applications. Together with
AutoC_c.sd you need the file AutoC_h.sd which creates the include files.
For an example of a program using these source descriptions see

Survey
.

C_c_V21.sd and C_h.sd are what you need if you either
1. have another compiler than Dice or SAS/C

2. want to use all possibilities of the locale.library/OpenCatalogA
call or

3. want to use more than one catalog file

The last reason is why the function names are slightly modified to
OpenXXXCatalog, GetXXXString and CloseXXXCatalog where XXX is the base
name from the source description. See

Source description
. These are

the function prototypes:
void OpenXXXCatalog(struct Locale *loc, char *language);
STRPTR GetXXXString(ULONG);
void CloseXXXCatalog(void);

Using these source descriptions you have to do the initialization and
termination manually. A program using these sourcce descriptions looks
like this:

#include <stdio.h>
#include <stdlib.h>
#include <HelloLocalWorld_Cat.h> /* You must include this! */
#include <clib/exec_protos.h>

struct Library *LocaleBase;

void main(int argc, char *argv[])
{ /* Open the library for yourself, even if the compiler supports */

FlexCat_english 15 / 24

/* automatic opening. NO exit, if OpenLibrary fails: */
/* We use the builtin strings in that case. */
/* For the same reason we must not use autoinitialization of the */
/* variable LocaleBase, even if our compiler supports it! */
LocaleBase = OpenLibrary("locale.library", 38);

OpenHelloLocalWorldCatalog(NULL, NULL);

printf("%s\n", GetHelloLocalWorldString(msgHello));

CloseHelloLocalWorldCatalog();
if (LocaleBase)

CloseLibrary(LocaleBase);
}

The last version, being the source descriptions C_c_V20.h and
C_h.sd, is functionally identical except for supporting catalogs
under 2.0. This is done by using the iffparse.library and reading the
catalogs manually.(1) Programs using this look quite the same as the
example above except for an option LANGUAGE which should be used under
2.0 only for calling OpenXXXCatalog and probably even be disabled under
2.1+.

---------- Footnotes ----------

(1) Of course you could do this even without the iffparse.library
and thus have catalogs under 1.3. However, I don’t want to support 1.3
anymore.

1.11 FlexCat_english.guide/C++

FlexCat source in C++ programs
==============================

Using FlexCat source in C++ programs is extremely comfortable: Almost
everything is done by a special class implemented in the files
C++_CatalogF.cc and C++_CatalogF.h. All you have to do is to rename
these files into CatalogF.cc and CatalogF.h, compile them and create
and compile two additional files using the source descriptions
C++_cc.sd and C++_h.sd. The former will create a file with the
strings (which must be compiled too, of course) and the latter will be
included into your own program. A C++ program which uses FlexCat
source will look like this:

#include <iostream.h>
extern "C"
{
#include <clib/exec_protos.h>
}
#include "CatalogF.h"
#include "HelloLocalWorld_Cat.h"

struct LocaleBase *LocaleBase = 0;

FlexCat_english 16 / 24

int main()
{ // You must open the library here, even if your compiler supports

// Auto-Opening: This will usually break if the locale.library
// is not present. This is not what we want here as we just use
// the builtin strings in that case.
LocaleBase = (struct LocaleBase *) OpenLibrary("locale.library", 38);

const CatalogF cat(0, 0, HelloLocalWorld_ARGS);

cout >> cat.GetString(msgHelloLocalWorld);

if (LocaleBase)
CloseLibrary(LocaleBase);
}

A modification of gcc’s libauto.a is available which will even allow
to remove the lines concerning the variable LocaleBase.

1.12 FlexCat_english.guide/Oberon

FlexCat source in Oberon programs
=================================

There are different source descriptions: AmigaOberon.sd is designed
for the current version of the AmigaOberon compiler, Oberon_V39.sd is
for older versions and Oberon_V38.sd uses the Locale.mod from Hartmut
Goebel. Oberon-A.sd is, of course for Oberon-A.

The function prototypes are
XXX.OpenCatalog(loc: Locale.LocalePtr; language : ARRAY OF CHAR);
XXX.GetString(num: LONGINT): Exec.StrPtr;
XXX.CloseCatalog();

where XXX is the basename from the source description. See

Source description
.

Finally an example using FlexCat source:
MODULE HelloLocalWorld;

IMPORT x:=HelloLocalWorld_Cat; Dos;

BEGIN
x.OpenCatalog(NIL, "");

Dos.PrintF("%s\n", x.GetString(x.msgHello));

(* Catalog will be closed automatically *)
(* when program exits. *)

END Anything;

FlexCat_english 17 / 24

1.13 FlexCat_english.guide/Modula-2

Flexcat source in Modula-2 programs
===================================

Modula-2 supports a module concept similar to Oberon. This means
that the function names are always the same. Unlike Oberon, however,
Modula-2 needs an implementation and a definition module, that’s why
you have to create two files using the source descriptions
Modula2Def.sd and Modula2Mod.sd. These are adapted for the M2Amiga
compiler. Note, that you need the file OptLocaleL.def from version 4.3
of the M2Amiga compiler, too.

The function prototypes are:
PROCEDURE OpenCatalog(loc : ld.LocalePtr;

language : ARRAY OF CHAR);
PROCEDURE CloseCatalog();
PROCEDURE GetString(num : LONGINT) : ld.StrPtr;

where XXX is the base name from the source description. See

Source description
.

Finally an example of a program using FlexCat source:
MODULE HelloLocalWorld;

IMPORT hl: HelloLocalWorldLocale,
io: InOut;

BEGIN
hl.OpenCatalog(NIL, "");

io.WriteString(hl.GetString(hl.msgHello)); io.WriteLn;

hl.CloseCatalog;
END HelloLocalWorld.

1.14 FlexCat_english.guide/Assembler

FlexCat source in Assembler programs
====================================

Assembler source is created for usage with the Aztec Assembler.
This should not be very different to other assemblers and you should be
able to implement own source descriptions. The source consists of two
parts: A .asm file which should be assembled and linked without further
notice and an .i include file which defines the string ID’s and must be
included by the using program.

The FlexCat-function names are slightly modified to allow the usage
of different catalogs in one file: These are OpenXXXCatalog,

FlexCat_english 18 / 24

CloseXXXCatalog and GetXXXString, where XXX is the base name from the
source description. The concept is copied from the GadToolsBox and
prooved good, as I think. See

Source description
.

As usual the function result is given in d0 and the functions save
registers d2-d7 and a2-a7. OpenCatalog expects its arguments in a0
(pointer to Locale structure) and a1 (Pointer to language string) which
should be NULL in most cases. GetString expects a pointer in a0. You
should not care about what it points to.

Finally an example of a program using FLexCat source:

* HelloLocalWorld.asm
include "XXX.i" ; Opening this is a must. This

; contains "xref OpenHelloLocalWorldCatalog", ...

xref _LVOOpenLibrary
xref _LVOCloseLibrary
xref _AbsExecBase

dseg
LocNam: dc.b "locale.library",0
dc.l _LocaleBase,4 ; Must be present under this name

cseg

main: move.l #38,d0 ; Open locale.library
lea LocName,a1
move.l _AbsExecBase.a6
jsr _LVOOpenLibrary(a6)

* NO exit, if OpenLibrary fails

sub.l a0,a0 ; Open catalog
sub.l a1,a1
jsr OpenHelloLocalWorldCatalog

lea.l msgHello,a0 ; Get pointer to string
jsr GetHelloLocalWorldString
jsr PrintD0 ; and print it

Ende:
jsr CloseHelloLocalWorldCatalog ; Close Catalog
move.l _LocaleBase,a1 ; Close locale.library
move.l a1,d0 ; this test is a must for 1.3
beq Ende1
jsr CloseLibrary

Ende1:
rts
end

1.15 FlexCat_english.guide/E

FlexCat_english 19 / 24

FlexCat source in E programs
============================

Since version 3.0 E allows to split a programs in separate modules.
The following describes the usage of E30b.sd which works with E3.0b or
later. (Version 3.0a had significant bugs, previous versions might use
E21b.sd which needs inserting the created source into the own source
manually.)

E30b.sd creates a module called Locale which contains a variable cat
of type catalog_XXX, where XXX is the basename from the source
description. See

Source description
. A file HelloLocalWorld.e might

look like this:
MODULE ’*Locale’

-> Use this module

DEF cat : PTR TO catalog_HelloLocalWorld
-> This variable contains all the catalog strings and some
-> methods. You must declare it in any module using
-> Localization, but initialize it in the main module only.

PROC main()

localebase := OpenLibrary(’locale.library’, 0)
-> Open locale.library; No exit, if it cannot
-> be opened: We use the builtin strings in that case.

NEW cat.create()
cat.open()

-> As already mentioned, this is needed in the main
-> module only.

WriteF(’\s\n’, cat.msg_Hello_world.getstr())
-> cat.msg_Hello_world one of the strings contained in
-> cat. This string declares a method getstr() which
-> reads the catalog and returns a pointer to the
-> localized string.

cat.close()
IF localebase THEN CloseLibrary(localebase)

ENDPROC

1.16 FlexCat_english.guide/Future

Further development of FlexCat

I don’t expect much further development for I think FlexCat to be
rather complete. Of course I’m open for suggestions, tips or critics.
Especially I offer to include new string types because this is possible

FlexCat_english 20 / 24

with very minor changes.

I would be pleased, if someone would send me new source descriptions
and I could introduce them into further distributions. Any programming
language, any extensions, provided that they are prooved good by
testing the source in a real existing program. And I would appreciate
receiving new catalogs. It is enough to insert the strings in the file
NewCatalogs.ct which is part of the distribution.

1.17 FlexCat_english.guide/Credits

Credits

My thanks go to:
Albert Weinert

for KitCat, the predecessor of FlexCat which has done me valuable
things, but finally wasn’t flexible enough, and for the Oberon
source descriptions.

Reinhard Spisser und Sebastiano Vigna
for the Amiga version of texinfo. This documentation is written
using it.

The Free Software Foundation
for the original version of texinfo and many other excellent
software.

Matt Dillon
for DICE and especially for DME.

Alessandro Galassi
for the italian catalog.

Lionel Vintenat
for the E source description and its documentation, the french
catalogs and bug reports.

Antonio Joaquín Gomez Gonzalez (u0868551@oboe.etsiig.uniovi.es) for
the C++ source descripton, the spanish translation of the manual,
the spanish catalog and the very good hint on speeding up the
GetString function.

Olaf Peters (op@hb2.maus.de) for the Modula-2 source description
Russ Steffen (steffen@uwstout.edu)

for the suggestion of the FLEXCAT_SDDIR variable.

Lauri Aalto (kilroy@tolsun.oulu.fi)
for the finnish catalogs.

Marcin Orlowski (carlos@felix.univ.szczecin.pl)
for the polnish catalogs and for maintaining the polnish locale
package.

FlexCat_english 21 / 24

The people of #AmigaGer
for answering many stupid questions and lots of fun, for example
stefanb (Stefan Becker), PowerStat (Kai Hoffmann), \ ill (Markus
Illenseer), Quarvon (Jürgen Lang), ZZA (Bernhard Möllemann),
Tron (Mathias Scheler), mungo (Ignatios Souvlatzis), \ jow
(Jürgen Weinelt) und Stargazer (Petra Zeidler).

Commodore
for the Amiga and Kickstart 2.0. Keep on developing it and I’ll be
an Amiga-user for the next 8 years too. ;-)

1.18 FlexCat_english.guide/Index

Index

x8

.cd
Catalog description

.ct
Catalog translation

.sd
Source description

Adress
Disclaimer

AmigaOberon
Oberon

Ascii-Code
Catalog description

Assembler
Assembler

Author
Disclaimer

AutoC_c.sd
C

AutoC_h.sd
C

AztecAs_asm.sd
Assembler

AztecAs_i.sd
Assembler

FlexCat_english 22 / 24

C
C

C++
C++

C++_CatalogF.cc
C++

C++_CatalogF.h
C++

C++_cc.sd
C++

C++_h.sd
C++

Catalog description
Catalog description

Catalog translation
Catalog translation

CLI
Program start

Contributions
Future

Control characters
Catalog description

Copyright
Disclaimer

Credits
Credits

C_c_V20.sd
C

C_c_V21.sd
C

C_h.sd
C

Deutsch.ct
Catalog translation

Distribution
Disclaimer

E
E

FlexCat_english 23 / 24

E21b.sd
E

E30b.sd
E

FlexCat
Future

FlexCat source
Using FlexCat source

FlexCat.cd
Catalog description

Future
Future

Installation
Installation

Internet
Disclaimer

Mail
Disclaimer

Modula-2
Modula-2

Modula2Def.sd
Modula-2

Modula2Mod.sd
Modula-2

Oberon
Oberon

Oberon-A
Oberon

Oberon_V38.sd
Oberon

Oberon_V39.sd
Oberon

Permissions
Disclaimer

Prohibitions
Disclaimer

Requirements
Installation

FlexCat_english 24 / 24

Source description
Source description

Survey
Survey

Using FlexCat source
Using FlexCat source

Workbench
Program start

	FlexCat_english
	FlexCat_english.guide
	FlexCat_english.guide/Disclaimer
	FlexCat_english.guide/Survey
	FlexCat_english.guide/Installation
	FlexCat_english.guide/Program start
	FlexCat_english.guide/Catalog description
	FlexCat_english.guide/Catalog translation
	FlexCat_english.guide/Source description
	FlexCat_english.guide/Using FlexCat source
	FlexCat_english.guide/C
	FlexCat_english.guide/C++
	FlexCat_english.guide/Oberon
	FlexCat_english.guide/Modula-2
	FlexCat_english.guide/Assembler
	FlexCat_english.guide/E
	FlexCat_english.guide/Future
	FlexCat_english.guide/Credits
	FlexCat_english.guide/Index

